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Abstract

In the present paper, an efficiently improved modified Magnus integrator algorithm based on commutator-free method

is proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the second-order dynamic

systems are transferred to the frame of reference by introducing new variable so that highly oscillatory behaviour inherited

from the entries. Then the modified Magnus integrator method based on local linearization is appropriately designed for

solving the above new form. And some optimized strategies for reducing the number of function evaluations and matrix

operations are also suggested. Finally, several numerical examples for highly oscillatory dynamic systems, such as

Airy equation, Bessel equation, Mathieu equation, are presented to demonstrate the validity and effectiveness of the

proposed method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we consider a second-order differential system with initial-value problems

€yþ gðtÞy ¼ 0; tX0; yð0Þ ¼ y0; y0ð0Þ ¼ y00 (1)

whose solution oscillates with a timescale much shorter than the fixed integration interval. We will refer to the
above dynamic system as highly oscillatory dynamic system, and Petzold stated that such equation is
characterized by a fast solution varying regularly about a slow solution [1].

High oscillatory systems often arise in many applications such as vehicle simulations, molecular dynamics,
circuit simulations, and flexible body dynamics. Moreover, some applications are folding the antenna of a
satellite or the oscillations appearing in the steering of a car. Apart from some direct practical interests, how to
find suitable numerical integrators for highly oscillatory problems has been a computational challenge for a
long time. To approximate the solution with sufficient accuracy, the step sizes far smaller than the smallest
approximate period of the oscillations must be taken with standard integrators. It is well known that classical
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solvers are not very effective for the above problem [1,2]. An early approach to take larger time steps in
oscillatory problems was given by Gautschi, who presented trigonometric integrators for differential equations
of the form €yþ o2y ¼ gðt; yÞ with a fixed frequency o [3]. His methods are extended readily to €yþ Ay ¼ gðt; yÞ
with a constant, symmetric, positive semidefinite matrix A of large norm. For this type of equation, Garcı́a-
Archilla, Sanz-Serna and Skeel proposed and analysed the mollified impulse method [4], and Hochbruck and
Lubich analysed Gautschi-type integrators [5]. Recently, based on the Magnus expansion [6,7], Iserles
extended the above analytical idea to equations with a time-dependent matrix A(t) and proposed a completely
different approach as a suitable numerical method for highly oscillatory linear differential equations.
Although some preliminary analyses of Iserles’ method are already available, it is clear that much work is still
to be done. In particular, the deeper detailed study is needed in order to clarify under which circumstances a
particular method is preferable to others, which requires, as a first step, some optimization strategies for
reducing the computational cost of the Magnus integrators, in particular by reducing the number of function
evaluations and matrix operations (products and/or commutators) involved. Here we will suggest
commutator-free method for highly oscillatory dynamic systems, and some numerical examples, such as
Airy equation, Bessel equation, Mathieu equation, show that the proposed methods appear to be quite
adequate for highly oscillatory dynamic systems.

2. Approximation method for highly oscillatory dynamic systems

2.1. The Magnus methods

The Magnus expansion [8] is a popular perturbative method for preserving the qualitative properties of the
exact solution of the linear system. In recent years, Iserles and Nørsett [6] use rooted trees to analyse the
Magnus expansion terms, and lead to a recursive procedure to construct practical algorithms for the numerical
integration of linear equation. In this section we sketch some basic ideas about approximation methods based
on the Magnus expansion for linear dynamic system [5,6]. Firstly, we convert differential equation (1) to the
vector equation

y0 ¼ AðtÞyðtÞ; tX0, (2)

where

AðtÞ ¼
0 1

�gðtÞ 0

" #
; yð0Þ ¼

y0

y00

 !
.

It is known that, from Magnus’ idea, the solution of differential equation (2) can be expressed as the form

yðtÞ ¼ eOðtÞy0, (3)

where O satisfies the following equation:

O0 ¼
X1
k¼0

Bk

k!
adk

OA; tXt0; Oðt0Þ ¼ 0,

where fBkgk2Zþ is the Bernoulli number and

ad0
OA ¼ O

adk
OA ¼ ½A; adk�1

O A� ¼ Aadk�1
O A� adk�1

O AA; k40.

The solution of the previous system is the so-called Magnus expansion of O given by

OðtÞ ¼
X1
k¼1

OkðtÞ, (4)



ARTICLE IN PRESS
W. Li et al. / Journal of Sound and Vibration 302 (2007) 39–49 41
whose terms are linear combinations of integrals and nested commutators involving the matrix A at different
times. Thus

O1ðtÞ ¼

Z t

t0

AðxÞdx,

O2ðtÞ ¼
1
2

Z t

t0

Z x1

t0

½Aðx2Þ;Aðx1Þ�dx2 dx1.

In order to discretize solution (3), it is necessary to truncate the infinite Magnus expansion (4) and to replace
integrals by quadrature. Therefore, the Magnus numerical scheme consists of advancing the Magnus
expansion by step h40 and approximating yðtnþ1Þ ¼ eOnðhÞyðtnÞ by

yðtnþ1Þ ¼ e
~OnðhÞyðtnÞ, (5)

with ~OnðhÞ truncation of OnðhÞ, where the integrals are replaced by quadrature.
2.2. Modified Magnus methods

A modified version of the Magnus method for linear dynamic system (2) can be designed explicitly for
oscillatory systems as in Refs. [9,10]. The algorithm advances from tn to tn þ h by setting

yðtÞ ¼ eðt�tnÞAðtnþ1=2ÞxðtÞ; tXtn, (6)

where tnþ1=2 ¼ tn þ
1
2
h and function x(t) satisfies

x0 ¼ BðtÞx; tXtn; xðtnÞ ¼ yðtnÞ, (7)

with

BðtÞ ¼ e�ðt�tnÞAðtnþ1=2Þ½AðtÞ � Aðtnþ1=2Þ�e
ðt�tnÞAðtnþ1=2Þ. (8)

The latter equation (7) is discretized by the standard Magnus integrator method so that xðtÞ ¼ e
~OnðhÞyn;

therefore, the global approximation is given by

ynþ1 ¼ ehAðtnþ1=2Þe
~OnðhÞyn; n 2 Zþ, (9)

when xðtÞ ¼ e
~OnðhÞyn is discretized by using (5), we can obtain a Modified Magnus scheme.

The idea which is the basis of the above algorithm is that the oscillatory behaviour of (2) is locally well
modelled by the linear equation with constant coefficients

~y0 ¼ Aðtnþ1=2Þ ~y,

whose solution is given by a matrix exponential. The first feature of matrix B is according to (8), BðtÞ ¼

Oððt� tnþ1=2ÞÞ; therefore, (9) represents a higher-order correction to the solution. The second is that the vector
field B(t) itself is a highly oscillating function. Since the integration process is a smoothing operator opposite
of differentiation, forming a Magnus expansion of (9) involves repeated integration of this vector field and
lowers the amplitude, hence the highly oscillatory nature of B(t) is likely to render them small.
3. Numerical interator for highly oscillatory dynamic systems

The Magnus expansion (4) has been used as a basis for obtaining efficient numerical integrators [6,7]
because the approximate solution is restricted to the same space as the exact flow, giving similar geometric
properties of the exact solutions. Provided that A(t) is a bounded matrix, the series is absolutely convergent for
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a sufficiently small t�t0 [11], Z t

t0

jjAðsÞjjdso1:086869, (10)

and the accurate approximation can be expected for such interval. In this case the Magnus series is a
good candidate for constructing numerical methods. Due to the particular structure, it is possible to e
valuate all multidimensional integrals using standard unidimensional quadrature derived from collocation
principles [6].
3.1. Fourth-order Magnus scheme

In this section we present the fourth-order Magnus scheme based on the Magnus expansion (4) for linear
dynamic system. To take advantage of the time-symmetry property we consider a Taylor expansion of A(t)
around t1=2 ¼ t0 þ

h
2
,

AðtÞ ¼
X1
i¼0

aiðt� t1=2Þ
i, (11)

where ai ¼ ð1=i!ÞðdiAðtÞ=dtiÞjt¼t1=2
, and then compute the corresponding expression for the terms Okðt0 þ h; t0Þ

in the Magnus expansion (4).
To get the methods up to order n ¼ 2s, it is only necessary to consider O1; . . . ;O2s�2 and the algebra

generated by the terms a1; . . . ; as [7,12,13]. Here we are interested in methods up to order 2s ¼ 4, we have to
consider Ok, k ¼ 1; 2.

O ¼ O1 þ O2 þOðh5
Þ ¼ b1 �

1
12
½b1; b2�, (12)

where bi ¼ ai�1hi; i ¼ 1; 2 then b1, b2 can be considered as the generators of a graded free Lie algebra with
grades 1,2 [12].

We can also consider the following unidimensional integrals [13]:

AðiÞðhÞ �
1

hi

Z t0þh

t0

ðt� t1=2Þ
iAðtÞdt ¼

1

hi

Z h=2

�h=2
tiAðtþ t1=2Þdt; i ¼ 0; 1; . . . ; s� 1, (13)

it is clear that AðiÞð�hÞ ¼ ð�1Þiþ1AðiÞðhÞ, and

AðiÞ ¼
Xs

j¼1

1� ð�1Þiþj

ði þ jÞ2iþj
bj þOðhsþ1

Þ; i ¼ 0; 1; . . . s� 1. (14)

then, we can write the bj in terms of the A(i) and substitute in the previous expressions for the Ok. For example,
we can obtain the following fourth-order Magnus method (Magnus4) approximations for ~OnðhÞ,

O½4� ¼ Að0Þ þ ½Að1Þ;Að0Þ�. (15)

In terms of the fourth-order Gauss–Legendre collocation points, we have Ai ¼ AðcihÞ; i ¼ 1; 2 with
ci;2 ¼

1
2
�

ffiffi
3
p

6
, then

Að0Þ ¼
h

2
ðA1 þ A2Þ �

Z h

0

AðtÞdt, (16)

Að1Þ ¼

ffiffiffi
3
p

h

12
ðA2 � A1Þ �

1

h

Z h

0

t�
h

2

� �
AðtÞdt. (17)

It is important to remark that all integrals can be numerically approximated using the same quadrature points
in this paper.
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3.2. Fourth-order commutator-free Magnus scheme

We can also choose alternative method, commutator-free method [14], to approximations up to the same order
obtained by a product of exponentials of linear combinations of the A(i), while avoiding the presence of commutators.

We can consider

C½4�m �
Ym
i¼1

expðað0Þi Að0Þ þ að1Þi Að1ÞÞ ¼ expðO½4�Þ þOðh5
Þ, (18)

where the coefficients aðiÞk have to be determined. Here, notice that using the Lie algebra generated by A(i) is
equivalent to use the Lie algebra generated by bi. Therefore, the number of terms of the Lie algebra is reduced
[13,14]. To get fourth-order integrators it suffices to consider the graded free Lie algebra generated by {b1, b2}.
Then, the problem is reduced to solve the equations:

C½4�m �
Ym
i¼1

expðxi;1b1 þ xi;2b2Þ ¼ exp b1 �
1

12
½b1; b2�

� �
þOðh5

Þ. (19)

In the following step, we will apply a time-symmetric method integrator, which means that c�1�h ¼ ch and the
coefficients has the following symmetry:

xmþ1�i;j ¼ ð�1Þ
jþ1xi;j ; j ¼ 1; 2; 3, (20)
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Fig. 1. From top to bottom, the global error in the solution of the Airy equation (27) by using fourth-order Runge–Kutta (RK4),

Magnus4 (M4), modified Magnus4 (MM4) and commutator-free modified Magnus4 (CFMM4) with time steps h ¼ 1
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(left) and h ¼ 1
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(right).
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which makes the scheme (19) time-symmetric and all even-order terms are cancelled. In practice, it is usually more
convenient to work with (18), i.e., in terms of unidimensional integrals so, any quadrature can be easily used. From
(12), and neglecting higher-order terms, we observe that for the fourth-order methods the changes to be done are

Að0Þ ¼ b1

Að1Þ ¼ 1
12

b2

(
)

að0Þi ¼ xi;1

að1Þi ¼ xi;2

(
. (21)

Next we present the order conditions to be satisfied by the coefficients xi;j for time-symmetric fourth-order
commutator-free Magnus integrators. Firstly, we illustrate the procedure to obtain the methods (we neglect terms
of order Oðh5

Þ. The order conditions are obtained from the recurrence given by the following time-symmetric
composition:

exb1þyb2eCðbðkÞÞexb1�yb2 ¼ eCðbðkþ1ÞÞ, (22)

where bðkÞ ¼ ðbðkÞ1 bðkÞ2 Þ; k ¼ 0; 1; . . . ;N ¼ ½m=2�,

CðbðkÞÞ ¼ bðkÞ1 b1 þ bðkÞ2 ½b1; b2�. (23)

Then recurrence relations are

bðkþ1Þ1 ¼ bðkÞ1 þ 2x;

bðkþ1Þ2 ¼ bðkÞ2 � yðbðkÞ1 þ xÞ;
(24)
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for k ¼ 1; 2; . . . ;N. Here we only consider the case of m ¼ 2 exponentials and the recurrence has to be started
with bð0Þ ¼ ð0; 0Þ and the exponential in the middle is eb

ð0Þ

1
b1 . Finally we have to equate to the coefficients given in

Eq. (12)

ðbðNÞ1 ;bðNÞ2 Þ ¼ 1;�
1

12

� �
. (25)

So we obtain the following order conditions for the coefficients xi;1; xi;2

C½4�2 � expðx1;1b1 þ x1;2b2Þ expðx1;1b1 � x1;2b2Þ with x1;1 ¼
1
2
; x1;2 ¼

1
6
. (26)

Solution (26) is a fourth-order approximation (commutator-free modified Magnus4) for ~OnðhÞ with only two
exponentials.
4. Numerical examples

In this section we want to validate the effectiveness of the methods, including the fourth-order classical
Runge–Kutta [15], Magnus4, modified Magnus4 and commutator-free modified Magnus4 in the field of
oscillatory systems (1). In the following figs, based on different methods, the global errors in the solution of
the test examples with fixed time steps h ¼ 1

8
and h ¼ 1

16
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Fig. 3. From top to bottom, the global error in the solution of the Bessel equation (28) by using fourth-order Runge–Kutta (RK4),
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Example 4.1. The first example to be presented here is Airy equation with the initial-value problem:

€yþ ty ¼ 0; tX0; yð0Þ ¼ 1; y0ð0Þ ¼ 0. (27)

The exact solution of (27) is given by yðtÞ ¼ p½Aið�tÞBi0ð0Þ � Ai0ð0ÞBið�tÞ�, where Ai(z) is Airy functions and
Bi(z) represents the Airy function of the second kind. It is easy to prove that the trajectory is a bounded
function that oscillates like sin t3=2, the frequency increases with time, which indicates that long-time
numerical integration is difficult and this can be confirmed by endeavouring to solve (27) with fourth-order
classical Runge–Kutta method [15]. Fig. 1 presents the global error in the solution of Airy Eq. (27) by
fourth-order classical Runge–Kutta method, Magnus4, modified Magnus4 and commutator-free modified
Magnus4 in the time interval [0,100] with different time steps; while Fig. 2 presents the global error in the time
interval [0, 2000].
Example 4.2. The second example of a highly oscillatory ODE is Bessel equation with the initial-value
problem:

t2y00 þ ty0 þ t2y ¼ 0; tX0; yð0Þ ¼ 1; y0ð0Þ ¼ 0, (28)

whose analyses solution is yðtÞ ¼ J0ðtÞ, J0ðtÞ ¼
P1

k¼0ðð�1Þ
k=ðk!Þ2Þðt=2Þ2k is a Bessel function of the first kind,

whose oscillatory behaviour is well known. Fig. 3 presents the global error in the solution of Bessel equation
(28) by fourth-order classical Runge–Kutta method, Magnus4, modified Magnus4 and commutator-free
200 400 600 800
-0.01

0

0.01

M
4

x10
-3 

 500 1000 1500 2000
-5

0

5

M
4

x10
-3

200 400 600 800
-5

0

5

M
M

4

x10
-4

 

0 500 1000 1500 2000
-5

0

5

t

C
F

M
M

4

 500 1000 1500 2000
-1

0

1

M
M

4

x10
-4

 

0 500 1000 1500 2000
-2

0

2

t

C
F

M
M

4

   200 400 600 800
-1

0

1

Global error

R
K

4

 500 1000 1500 2000
-1

0

1

Global error

R
K

4

x10
-3 

Fig. 4. From top to bottom, the global error in the solution of the Bessel equation (28) by using fourth-order Runge–Kutta (RK4),

Magnus4 (M4), modified Magnus4 (MM4) and commutator-free modified Magnus4 (CFMM4) with time steps h ¼ 1
8
(left) and h ¼ 1

16

(right).



ARTICLE IN PRESS
W. Li et al. / Journal of Sound and Vibration 302 (2007) 39–49 47
modified Magnus4 in the time interval [0,100] with different time steps, while Fig. 4 presents the similar error
in the time interval [0, 2000].

Example 4.3. The last example we have considered refers to the Mathieu equation:

y00 þ 2gy0 þ ðdþ g2 þ � cosð2tÞÞy ¼ 0, (29)

which corresponds to an oscillator whose elasticity is a sinusoidal function of time. Doing the transformation
y ¼ egtz, this equation becomes z00 þ ðdþ � cosð2tÞÞz ¼ 0, which is a Hill-type equation. Equations of this type
appear in many physical and engineering problems such as stability of a transverse column subjected to a
periodic longitudinal load, lunar motion and the excitation of certain electrical systems. There are transition
curves separating stable and unstable solutions of this equation, in this example we have chosen different
parameters and initial values [16]:

Case 1 : d ¼ 1:000499968748047; � ¼ 0:001; yð0Þ ¼ 0; y0ð0Þ ¼ 1; (30)

Case 2 : d ¼ 0:999791843656178; � ¼ 0:001; yð0Þ ¼ �1:557212993975872; y0ð0Þ ¼ 1. (31)

The exact solution has been accurately approximated using a sufficiently small time step. Fig. 5 presents the
global error in the solution of Mathieu equation (29) by fourth-order classical Runge–Kutta method,
Magnus4, modified Magnus4 and commutator-free modified Magnus4 in the time interval [0, 200p] using
initial value (30) with different time steps, while Fig. 6 presents a similar error using initial value (31).
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In Figs. 1 and 2, it is evident that the Magnus-type methods perform better than classical Runge–Kutta
method on both timescales, when applied to the Airy equation; notice that classical Runge–Kutta method
loses accuracy for the longer integration interval, but the Magnus-type methods have a remarkable advantage
for numerical integration over long time as shown in Fig. 2; furthermore, concerning the modified Magnus
integrator method and commutator-free modified Magnus method, which take a sharp improvement
compared to Magnus integrator method; otherwise, the commutator-free modified Magnus method has a
more favourable behaviour than the modified Magnus method. We can make similar considerations regarding
the performances of the proposed schemes for the solution of the Bessel equation in Figs. 3 and 4, even for the
numerical results of Mathieu equation in Figs. 5 and 6.

5. Conclusions

To solve highly oscillatory dynamic systems, we have suggested numerical methods which are based on the
solution expression by means of the exponential map, and performed several numerical tests in order to show
the effectiveness of those methods with respect to the Magnus method and the classical Runge–Kutta method.
Especially a improved modified version of the considered Magnus methods, explicitly designed for oscillatory
problems, is taken into account, and we also point out good performance of the improved modified scheme
based on commutator-free method. In the further research, we will intend to extend the proposed method to
the non-homogeneous case and non-linear case.
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